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A stability analysis of a drum brake, which has shoes of non-uniform cross-section, is
performed to "nd a simple and e!ective method of reducing the squeal of the drum brake by
partially changing the shapes of the shoes. The squeal is considered as a noise induced by the
self-excited vibration of the drum brake which makes the brake unstable. Shoes of non-uniform
cross-section are often used for the drum brake of current passenger cars to reduce the squeal.
However, the in#uence of this non-uniformity upon the squeal has not been analyzed
theoretically. In this study, the drum and the shoes are assumed as a uniform ring and
non-uniform arches, respectively, for modelling the brake. For a reasonable method of
modelling, the vibration characteristics of the brake and their relations to the squeal are
discussed based on the results of modal tests. The in#uences of brake design parameters upon
the squeal are investigated, and a minor change of the cross-section is proposed to reduce the
squeal. The e!ect of the minor change is veri"ed through noise dynamometer tests. In addition,
the e!ect of asymmetry of the drum, which can be built by mass addition, is presented.

( 2001 Academic Press
1. INTRODUCTION

Squeal is a signi"cant noise problem occurring in vehicle braking systems, mass transit
systems, etc. Kootwijk-Damman [1] and Nakai et al. [2] have been investigated railway
wheel squeal of mass transit systems, and McMillan [3] has developed a non-linear friction
model for the understanding of the phenomenon of railway wheel squeal. Many studies on
the squeal of vehicle braking systems have also been performed since the 1920s.

Earlier studies on the brake squeal focused on &&stick}slip'' caused by the coe$cient of
static friction, higher than that of dynamic friction. Subsequently, negative friction}velocity
0022-460X/01/100789#20 $35.00/0 ( 2001 Academic Press
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slope as well as &&sprag-slip'' phenomenon was considered as a reason of the squeal [4}8].
Millner introduced an idea that the squeal is a phenomenon of dynamic instability caused
by the coupling e!ects between brake components; the coupling e!ects are built by the
frictional force variations due to the variation in normal forces between the brake
components [9]. He proposed a new theoretical model of a drum brake, and Okamura et al.
improved his model to represent a real drum brake in more detail [10]. The study on the
squeal has been continued by Lang et al, Chen et al., Zhu et al., HulteH n and so forth [11}17].
HulteH n proposed a model of a drum brake in which the drum and the shoes were assumed
to be distributed mass-spring systems. In these studies, the squeal of drum brakes which
have shoes of uniform cross-section has been investigated.

Shoes of non-uniform cross-section are often used for the drum brake of recent passenger
cars to reduce the squeal. The non-uniform cross-section is built by changing the shapes of
the shoes partially, and this minor change is a simple and e!ective method to reduce the
squeal. However the method of changing the shapes has not as yet been analyzed
theoretically, but determined through perception and experiment.

This paper deals with a theoretical analysis for the squeal of a drum brake which has the
shoes of non-uniform cross-section. A minor change of the shoe's cross-section will be
proposed to reduce the squeal, and the e!ect of the change will be veri"ed through noise
dynamometer tests. In addition, the e!ect of mass addition to the drum, which was
investigated by Lang et al. [18] through a simple binary #utter model, will be presented.

2. EXPERIMENTAL INVESTIGATION FOR THE DYNAMIC CHARACTERISTICS
OF THE DRUM BRAKE

The squeal was monitored during drive tests of a passenger car and measured to have
frequencies of 3)1 and 5)1 kHz; the 3)1 kHz squeal will be mainly dealt with in this paper.
The squeal is a complex phenomenon caused by the dynamic behavior of the brake parts
and friction mechanism. In this section, the e!ects of the dynamic characteristics of the
drum and the shoes are to be discussed. Modal tests were performed to investigate the
dynamic characteristics. From the results of the modal tests, it was found that the dynamic
characteristics of the brake parts vary as they are assembled and the brake pressure is
applied. Therefore, the experimental investigations will be focused on the comparison of the
brake parts in freely supported condition with the brake assembly to which the brake
pressure is applied.

2.1. DYNAMIC CHARACTERISTICS OF THE BRAKE PARTS

The modal parameters of the drum and the shoe, not assembled together, were estimated
through the modal tests. Figure 1 is the photo of the drum and the shoe used in this study,
and the points of FRF acquisition during the modal tests are shown. The shoe consists of
the web and the rim; the web is attached to the rim to increase the sti!ness of the shoe. The
number of the FRF acquisition during the modal tests are shown. The shoe consists of the
web and the rim; the web is attached to the rim to increase the sti!ness of the shoe. The
number of the FRF acquisition points of the drum and the shoe are 20 and 8 respectively.

Table 1 shows the natural frequencies of the drum and the shoe in freely supported
condition extracted from the modal tests, and the mode shapes of mode Nos. 2d and 2s are
represented in Figure 2. Because mode No. 2d has two natural frequencies as a pair,
only one mode shape is shown in Figure 2(a); another mode shape is identical with that in



Figure 1. Photo of (a) the drum and (b) the shoe.

TABLE 1

Natural frequencies of the drum and the shoe extracted from the modal
tests performed in freely supported condition

Component Mode no. Natural frequency (kHz)

Drum 1d 1)07, 1)10
2d 2)62, 2)70
3d 4)79

Shoe 1s 2)11
2s 5)56
3s 7)29

Figure 2. Mode shapes of the drum and the shoe extracted from the modal test performed in freely supported
condition: (a) mode No. 2d of the drum; (b) mode No. 2s of the shoe.

SQUEAL OF A DRUM BRAKE WHICH HAS SHOES OF NON-UNIFORM CROSS-SECTION 791
Figure 2(a) except the positions of nodes and anti-nodes. As shown in Figure 2, the mode
shape of mode No. 2d closely resembles the second #exural mode shape of a freely
supported ring, and the mode shape of mode No. 2s also resembles the second bending
mode shape of a freely supported arch.

2.2. DYNAMIC CHARACTERISTICS OF THE DRUM BRAKE ASSEMBLY

The modal tests for the drum brake assembly were also performed under the condition of
32 bar brake pressure. Figure 3 shows the drum brake assembly; the lining is attached to the
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shoe and the friction is occurred between the lining and the drum. The number of the FRF
acquisition points of the drum and the shoe are 20 and 16 (8 at each end of the rim)
respectively.

Table 2 shows the natural frequencies of the drum brake assembly which are close to the
frequencies of the squeal measured from the drive tests, and the mode shapes of mode
No. 2a related to the 3)1 kHz squeal are represented in Figure 4. The circle and the circular
strip represent the drum and the shoe, respectively, in this "gure. The mark X means the
same position in the circumferential direction and only one shoe in the assembly is
represented. In this "gure, the drum of mode No. 2a has the mode shapes almost identical
with the mode shape of mode No. 2d in Figure 2(a); the drum almost keeps the mode shapes
of freely supported state when the shoe is coupled up to the drum and the brake pressure is
applied. Therefore, the mode shapes of freely supported drum can be used in theoretical
analysis. However, it is di$cult to say that the shoe also keeps the mode shapes of freely
supported state when the brake pressure is applied. As shown in Figure 4, the mode shapes
of the shoe vary according to those of the drum.
Figure 4. Mode shapes of mode No. 2a (brake assembly) related to the 3)1 kHz squeal extracted from the modal
test: (a) 2)90 kHz; (b) 3)18 kHz.

TABLE 2

Natural frequencies of the drum brake assembly extracted from the modal tests and the squeal
frequencies measured from the drive tests

Mode no. Natural frequency from modal Squeal frequency measured from the
test (kHz) drive tests (kHz)

2a 2)90, 3)18 3)1
3a 5)03 5)1

Figure 3. Figure of the drum brake assembly.
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As shown in Table 1, the natural frequencies of the drum are quite close to the squeal
frequencies in comparison with the shoe; the squeal frequencies are a little higher than the
natural frequencies of the freely supported drum because of the brake pressure. This means
that the vibration characteristics of the drum changes just a little when the brake pressure is
applied, while those of the shoe changes very much.

2.3. MODE SHAPES OF THE DRUM AND THE SHOE USED IN ANALYSIS

Millner and Okamura et al. used the natural mode shapes of the freely supported ring and
arch in their model, and they assumed that the mode shapes of mode No. 2a consist of those
of mode Nos. 2d and 2s [9, 10]. It is possible to assume that the mode shapes of the drum in
mode No. 2a are the same as the mode shapes of mode No. 2d, that is, the 2nd #exural mode
shape of a freely supported ring. However, the mode shapes of the shoe in mode No. 2a are
not identical with the mode shape of mode No. 2s, that is, the 2nd bending mode shape of
a freely supported arch. The mode shapes of the shoe in the brake assembly are dependent
on the behavior of the drum. Therefore, series of trial functions will be used to approximate
the mode shapes of the shoes in this paper. Moreover, the non-uniform and arbitrary
cross-section of the shoe makes it necessary to use approximate method to the shoes.

3. THEORETICAL MODEL

Figure 5 shows a dynamic model of the brake assembly. The drum and the shoes were
regarded as a uniform thin ring and non-uniform thin arches respectively. Therefore, the
model was built considering the radial and circumferential displacements of the brake
components. The drum and the shoes can be regarded as a thick ring and thick arches,
respectively, and then shear deformation and rotary inertia must be considered by adding
a rotational degree of freedom to the model. However, the squeal was analyzed as
Figure 5. Theoretical model of a drum brake assembly.
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a phenomenon of dynamic instability caused by the frictional force variations due to the
variation in normal forces between the brake components, and the normal forces are caused
by the radial displacement; the radial displacement is coupled with the circumferential
displacement in thin ring theory. Therefore, the e!ect of the rotational degree of freedom is
much less than that of the radial and the circumferential displacements, and thin ring theory
was used in this analysis. The dynamic characteristics of the thin ring and arches come to be
identical with those of the drum and shoes, by calculating the parameters of the thin ring
and arches according to the procedures represented in section 5.

Parameters w and v are the radial and the circumferential displacements, and they are
subdivided by the subscripts d, 1 and 2; w

d
and v

d
are the displacements of the drum, and w

1
,

v
1
, w

2
and v

2
are those of shoes 1 and 2. The circumferential co-ordinates h and / have their

origins at the center of shoes 1 and 2, respectively, and d is the angular distance between
their origins. Parameters b

1
and b

2
are the angular distances between the center of shoe

1 and the ends of the lining attached to shoe 1. In the case of shoe 2, c
1

and c
2

are used
instead of b

1
and b

2
. The linings were modelled as distributed radial springs. The spring

constants k
1
, k

2
, k

3
and k

4
are equivalent to the normal components of contact sti!nesses.

The tangential components are neglected because they are very small due to lubricating the
contact surfaces with grease. The kth lumped mass attached to the drum to analyze the
e!ects of asymmetry is stated as m

k
. The asymmetry of a ring oppresses the wave motions by

"xing its mode shapes to its body, so it results in the decrease of instability. The e!ects of
drum rotation were neglected with the exception of the frictional forces between the drum
and the lining, because the rotation speed was much less than the vibration speed of the
drum.

4. EQUATION OF MOTION

4.1. KINETIC AND POTENTIAL ENERGIES

The equation of motion was obtained by the assumed-modes method. The kinetic and the
potential energies of the drum brake were calculated as
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where K and ; are the kinetic and the potential energies, and the subscripts d, s, lin and
k mean the drum (the ring), the shoe (the arch), the lining and the contact sti!ness
respectively.

The kinetic and the potential energies of the ring are given by the expressions
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where o
d
, A

d
, r

d
and EI

d
are the density, the cross-sectional area, the radius of neutral

surface and the bending sti!ness of the ring respectively. In equation (2), r is the number of
added masses and d (h!h

k
) is a Dirac delta function in which h

k
is the angular position of
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the added mass m
k
. Equations (2) and (3) were derived by applying the inextensional

approximation

w
d
"!

Lv
d

Lh
, (4)

because the drum had almost identical #exural mode shapes with those of a freely supported
ring.

The inextensional approximation cannot be applied to the arches because of the contact
sti!nesses at the ends. Therefore, the kinetic and the potential energies of the arches are
given by the expressions
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where o
1
, A

1
, r

1
, E

1
and I

1
are the density, the cross-sectional area, the radius of neutral

surface, the Young's modulus and the cross-sectional moment of inertia of the arch
equivalent to shoe 1, respectively; and o

2
, A

2
, r
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, E
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are those of the arch equivalent

to shoe 2. By approximating the pro"le of the web to spline functions, A
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are obtained as functions of h or /, then the integration in equations (5) and (6) can be
performed. Figure 6 represents the pro"le of the web obtained by the spline functions used
in this analysis.

The potential energy of the lining can be derived from the relative displacements of the
ring and the arches as
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where the radial spring constant of the lining per unit angle
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Figure 6. Web pro"le of the original shoe obtained by spline functions and the cross-section of the shoe.
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E
lin

, b
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, r
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and h
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are the Young's modulus, the width, the radius and the thickness of the
lining. The potential energy due to the contact sti!nesses at the ends of the arches
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where d(h!a) and d (h#a) are Dirac delta functions.

4.2. MODE SHAPES OF THE RING AND THE ARCHES

The squeal of 3)1 kHz was analyzed in this study, so a pair of second #exural modes of the
ring was used. The mode shapes of the arches were approximated by a series of trial
functions, because the arches have non-uniform cross-sections and are assembled with the
ring equivalent to the sti! and massive drum. This means that approximate method was
partially used by considering a series of trial functions for the arches only.

The circumferential displacement of the ring

v
d
"cos nhg

1
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2
(t), (10)

where g
1
(t) and g

2
(t) are the generalized co-ordinates of a pair of ring modes, and the

constant n is the number of nodal lines; for example, the n of the second #exural mode is 3.
By including only a pair of the ring modes, the squeal of a speci"c frequency can be analyzed
separately. The radial displacement of the ring is calculated from equations (4) and (10).

Polynomials are used for the trial functions of arches as
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where N is the number of trial functions and f
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(t) are the generalized
co-ordinates of those functions.

4.3. GENERALIZED FORCES DUE TO FRICTION

The frictional forces applied on the arches are obtained from the relative displacements of
the ring and the arches as

F
1
"!kk

lin Aw1
#

Lv
d

LhB , F
2
"!kk

lin Aw2
#

Lv
d

LhB , (13a, b)



SQUEAL OF A DRUM BRAKE WHICH HAS SHOES OF NON-UNIFORM CROSS-SECTION 797
where k is the coe$cient of friction of the lining. The frictional forces equal in magnitude
and opposite in direction are applied on the ring. The generalized forces due to the frictional
forces applied on the arches are given by the expressions
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In the case of the ring, the generalized forces
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4.4. EQUATION OF MOTION

By substituting equations (1)}(15) into Lagrange's equation, the equations of motion of
the drum brake with friction are obtained as
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where i is an integer between 1 and N; the integer i is the subscript of c
8i

, c
9i

, c
10i

or c
11i

in
equations (16c)}(16f ). Therefore, each equation in equations (16c)}(16f ) can be expanded to
N equations; the total number of equations is 4N#2. The coe$cients (c

1
}c

29
) are

represented in Appendix A. These equations of motion can be rearranged to a matrix form as
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M and K are (4N#2) by (4N#2) matrices; sub-matrices M
11

and K
11

are 2]2 and the
other sub-matrices diagonal in M and K are N]N. The components of the sub-matrices are
represented in Appendix B.

The dynamic stability of the brake system can be determined by the real parts of the
eigenvalues obtained from equation (17). The matrices M and K are symmetric when the
coe$cient of friction k is zero, but K becomes asymmetric as k is not equal to zero. The
asymmetry of K can induce the positive real parts which result in the negative damping ratios
of the system; the negative damping ratios make the vibration of the system diverge.
Therefore, the system comes to have the instability that results in the generation of the squeal.

5. EQUIVALENT PARAMETERS

The simulation for the squeal of 3)1 kHz is performed in this study, by including only
a pair of the 2nd #exural modes of the ring. Therefore, the equivalent parameters of the
drum brake associated with the squeal of 3)1 kHz are presented in this paper.

The cross-sectional area and the bending sti!ness of the ring are di!erent from those of
the drum which are directly calculated from the cross-sectional dimensions of the drum. The
two parameters of the ring should be calculated as equivalent parameters which represent
the modal characteristics of the drum. However, the two equivalent parameters cannot be
obtained simultaneously. After one of the two is determined, another parameter will be
obtained if the natural frequency of the ring is known. This is because the cross-sectional
area and the bending sti!ness are applied to the kinetic and the potential energies,
respectively, and then the natural frequency is determined from both of the kinetic and the
potential energies. Accordingly, the equivalent parameters of the ring are obtained from the
following procedure.

(i) Calculate the reference kinetic energy of the drum by FE analysis; the reference kinetic
energy does not include the natural frequencies of the drum. The reference kinetic
energy is used instead of the kinetic energy, because the natural frequencies of the
drum calculated by FE analysis is not exactly equal to those of the real drum. Figure
7(a) represents mode No. 2d used in the calculation of the reference kinetic energy.

(ii) Calculate the reference kinetic energy of the ring's second #exural mode as a function
of cross-sectional area A

d
.

(iii) Obtain A
d

from the fact that the two reference kinetic energies, calculated from the
above procedure, must be of an equal value.



Figure 7. Mode shapes of the drum and the shoe extracted from the FE analysis performed in freely supported
condition: (a) mode No. 2d of the drum; (b) mode No. 2s of the shoe.

TABLE 3

Parameters for the analysis of 3)1 kHz squeal (MKS unit)

Component Parameter Value Parameter Value
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Shoe rA 2)87 o
1
, o

2
7850

rI 1)16 E
1
, E

2
210]109

Lining b
lin

0)0365 r
lin

0)0999
h
lin

0)0035 E
lin

3)0]107

Contact sti!ness k
1
, k

4
1)0]108 k

2
, k

3
6)0]108

Geometry a 68)53 b
1

65)53
d 1803 b

2
44)53
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(iv) Calculate the natural frequency of the ring's second #exural mode as a function of
bending sti!ness EI

d
.

(v) Obtain EI
d

from the fact that the natural frequencies of the ring and the real drum
must be of an equal value. The natural frequency of the real drum is shown in Table 1.

This procedure is also applied to the equivalent parameters of the arches A
1
, A

2
, I

1
and

I
2
. However, these parameters cannot be obtained directly from this procedure, because

these are not constants but the spline functions. As a result, scale factors rA and rI are
introduced; A

1
and A

2
are calculated by multiplying rA to the real cross-sectional areas of

the shoes, and I
1

and I
2

by multiplying rI to the real cross-sectional moments of inertia of
the shoes. Because the shapes of the two shoes are the same, only the two scale factors are
introduced. These scale factors, which determine the equivalent parameters of the arches,
can be obtained by applying the above-mentioned procedure. Figure 7(b) shows mode No.
2s used in the calculation of the reference kinetic energy.

This concept of equivalent parameters is also necessary to build a reasonable coupled
system of the ring and the arches, because the modal characteristics of the coupled system
are determined by the amount of kinetic and potential energies occupied by the ring or the
arches in the system. Table 3 shows the parameters of the ring and the arch including the
above-mentioned equivalent parameters.
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6. RESULTS AND APPLICATION

6.1. RESULTS OF EIGENVALUE ANALYSES

Eigenvalue analyses of equation (17) were performed to determine the dynamic stability
of the brake system. Two modes, i.e., a pair of second #exural modes of the ring and two
#exural modes for the arches were used in calculation of Figures 8 and 9, because the squeal
of 3)1 kHz was analyzed in this study. As stated in section 4.2, ideal ring mode shapes were
used for the ring, but approximated mode shapes were used for the arches; 3 was used for
n in equation (10) and 20 was used for N in equations (11) and (12). Eighty polynomials were
used as the trial functions for the modes shapes of the two arches. Therefore, M and K in
equation (17) were 82]82 matrices.

Figure 8 shows the natural frequencies and the real parts of the eigenvalues obtained by
the eigenvalue analyses with variation of the coe$cient of friction. As shown in Figure 8(a),
the two di!erent lines of the natural frequencies converge at the coe$cient of friction of 0)37.
This is because the eigenvalues are pure imaginaries not equal in magnitude at the
coe$cient of friction less than 0)37, and are complex numbers equal in magnitude at the
coe$cient of friction between 0)37 and 1. The complex numbers have the positive and the
negative real parts as shown in Figure 8(b), and the positive real parts make the system
unstable. Therefore, the coe$cient of friction of 0)37 is a critical value of the squeal. In the
unstable region, the system has a complex mode shape because of the complex eigenvalue,
therefore the behavior of the system comes to be a wave motion.

Figure 9 shows that the unstable system has the wave motion, while the stable system has
the mode shape "xed to its body. The wave motion of the squealing brake was investigated
experimentally by Lang et al. and HulteH n [11, 17]. Consequently, the instability of the
system is reduced by oppressing the wave motion. It is also found that the mode shapes of
Figure 8. Natural frequencies and real parts of the eigenvalues with variation of the friction coe$cient:
(a) natural frequencies; (b) real parts of the eigenvalues.



Figure 9. Animated mode shapes of the drum brake: (a) unstable system; (b) stable system. The integers mean
the steps of the motion.
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the arches in the stable system are not identical with those of freely supported arches, but
are dependent on the mode shape of the ring.

6.2. PARAMETER STUDIES AND DISCUSSIONS

The positive real parts of the eigenvalues were calculated with variation of
each parameter to "nd the in#uences of the parameters upon the squeal. The parameters
in the range of $20% variation and the coe$cient of friction of 0)37 were used in the
calculation.

It is examined from Figure 10(a) that the positive real parts increase with the parameters
in the range from zero to #20% variation, while they are all zeros in the range of the
parameters from zero to !20% variation. This means that A

d
and rI should be decreased

to reduce the instability of the brake system. On the contrary, Figure 10(b) shows that EI
d
,

rA and E
lin

should be increased to reduce the instability. In other words, the increase of the
cross-sectional area and the decrease of the bending sti!ness of the shoe are advantageous
to the reduction of the squeal, and the drum produces the opposite results. Figure 11 shows
the in#uences of the geometric parameters upon the squeal. As shown in this "gure, the
increase of b

1
and the decrease of b

2
can reduce the squeal, and c

1
and c

2
also have the same

e!ects respectively. The angular distance d has an optimum value close to the original value
which has no variation. The in#uences of these parameters upon the squeal can vary with
the kind of drum brake and the frequency of the squeal.

It is generally accepted that the wave motion easily occurs in axisymmetric structures,
and is oppressed by adding asymmetry. The lumped masses were attached to the drum for
the asymmetry, and the in#uences of the masses were analyzed with the coe$cient of
friction of 1)0 which is much higher than that of the critical value. The system is extremely
unstable when the value of the coe$cient of friction is much higher than the critical value.
The added masses were equally spaced on the circumference to keep the balance of the
drum. It is seen from Figure 12 that the 2 and the 3 added masses are e!ective to the squeal
while the 4 masses are not. This is because the 2 and the 3 split up the natural frequency of
the ring's pair mode into the two very di!erent frequencies, as compared with the 4. As
shown in Figure 8(a), the larger the di!erence between the two frequencies, the higher the
value of the critical coe$cient of friction.



Figure 10. Positive real parts of the eigenvalues with variations of (a) A
d
, rI and (b) EI

d
, rA, E

lin
.

Figure 11. Positive real parts of the eigenvalues with variations of the assemble angles.
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6.3. MODIFICATION OF THE PARTIAL SHAPE OF THE WEB

The parameter studies has brought up the fact that the squeal is reduced by the increase
of the cross-sectional area and the decrease of the bending sti!ness of the shoe. However,
the two modi"cations of the shoe cannot be carried out simultaneously. Accordingly,
the bending sti!ness should be decreased e!ectively with minimum decrease in the
cross-sectional area.

To carry out this process, the small parts at which the strain was concentrated were
modi"ed as little as possible. The concentrated strain was found from the strain energy
distribution of the shoe obtained by FEM; Figure 13 shows the strain energy distribution of
mode No. 2s of the shoe. Figure 14 shows the pro"le of the web modi"ed by cutting the



Figure 12. Positive real parts of the eigenvalues with variations of the added masses.

Figure 13. Strain energy distribution of mode No. 2s of the shoe extracted from the FE analysis.

Figure 14. Web pro"le of the original and the modi"ed shoe obtained by spline functions.

SQUEAL OF A DRUM BRAKE WHICH HAS SHOES OF NON-UNIFORM CROSS-SECTION 803
several parts, and also Table 4 shows the natural frequencies of the shoe and the critical
coe$cients of friction calculated in the analysis before and after the modi"cation. The
increase in the critical coe$cient of friction means that the squeal would be reduced by that
modi"cation.

6.4. VERIFICATION THROUGH NOISE DYNAMOMETER TESTS

The e!ect of the modi"cation of the web has been veri"ed through noise dynamometer
tests shown in Figure 15. The drum brake was combined with the rear wheel, and the



TABLE 4

Natural frequencies of the shoe and critical coe.cients of friction before and after modi,cation

Natural frequency of Critical coe$cient of
second bending mode (kHz) friction

Original shoe 5)56 0)37
Modi"ed shoe 4)78 0)54

Ratio !14)0% #45%

Figure 15. Photo of (a) the noise dynamometer test and (b) enlarged photo of the rear wheel with which the
drum brake is combined.

TABLE 5

Result of noise dynamometer tests

Test no. Type of shoe Noise Noise Remarks
ratio (%) index

1 Original shoe 0)25 0)31 Not exceeded noise limit
(squeal occurred)

2 Original shoe 0)23 4)00 Exceeded noise limit

3 Modi"ed shoe 0)00 0)00 No squeal occurred
4 Modi"ed shoe 0)00 0)00 No squeal occurred
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number of times and the sound pressure levels of the squeal were measured by
a microphone. From these measured data, noise ratios and noise indexes were calculated
and these values are represented in Table 5 compared with the noise limit demanded by
buyers.

Noise ratio is a ratio of the number of squeal occurrence to the total number of braking,
and noise index is a value obtained by non-dimensionalizing the sound pressure of the
squeal occurred. Therefore, the bigger the noise ratio, the more the squeal occurrence, and
the bigger the noise index, the louder the sound of squeal. Four tests were performed, and
the total number of braking was 3543 per a test; it took 5 days to "nish 1 test.



Figure 16. Spectrums of the drum brake noise measured in the noise dynamometer test: (a) the original shoe
used and 3)1 kHz squeal occurred; (b) the modi"ed shoe used and no squeal occurred.
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It is found from Table 5 that the drum brake with the modi"ed shoe generates no squeal
contrary to the original shoe. Figure 16 shows the sound spectrums of the brake with the
original or the modi"ed shoe; the other spectral lines except the dominant peak of 3)1 kHz
in Figure 16 are environmental noises. From the above results, the partial modi"cation of
the web is found to be e!ective in reducing the squeal occurrence.

7. CONCLUSIONS

In this paper, a theoretical analysis was carried out to reduce the squeal of a drum brake
which has shoes of non-uniform cross-section, and the in#uences of the brake design
parameters upon the squeal were investigated.

All the results show that the squeal would be reduced by changing the dynamic
characteristics of the brake components. In the case of the shoe, the increase of the
cross-sectional area and the decrease of the bending sti!ness reduce the squeal of the drum
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brake. However, they cannot be performed simultaneously, so a method of modi"cation
was proposed to e!ectively reduce the bending sti!ness of the shoe with the minimum
decrease of the cross-sectional area by considering the strain energy distribution. According
to this method, a minor change of the cross-section was performed, and the e!ect of the
change was con"rmed through the theoretical analysis and the noise dynamometer tests. As
a result, it has been concluded that even a minor change of the shoe has a great e!ect on the
reduction of the squeal.

Finally, the e!ects of the asymmetry of the drum were also investigated considering the
relation between the instability and the wave motion.
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